Chlorosulfonylated Calix[4]arenes: Precursors for Neutral Anion Receptors with a Selectivity for Hydrogen Sulfate

Yury Morzherin, Dmitry M. Rudkevich, Willem Verboom, and David N. Reinhoudt*

Laboratory of Organic Chemistry, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands

Received July 12, 1993

Introduction

In nature phosphate and sulfate binding proteins are very important receptors for the active transport systems in the cell.^{1,2} A very high selectivity in binding has been observed in prokaryotic, periplasmic phosphate and sulfate binding proteins, which demonstrate $>10^5$ selectivity for binding phosphate over sulfate and sulfate over phosphate. respectively.³ In both proteins the specific binding exclusively takes place through hydrogen bonding.

Synthetic receptors that bind anions contain either positively charged guanidinium or ammonium groups⁴ or Lewis acid metal centers⁵ to accomplish anion binding. Recently we reported functionalized uranyl-containing salenes⁶ and sulfonamides⁷ derived from tris(aminoethyl)amine (TREN) that form complexes with hard anions in CH_3CN with a selectivity for H_2PO_4 . In the present paper we report anion receptors based on chlorosulfonylated calix[4]arenes.⁸

Calix[4]arenes are important building blocks in supramolecular chemistry.^{10,11} They can be (selectively) functionalized both at the phenolic OH groups (lower rim) and at the para positions of the phenol rings (upper rim).¹²

Results and Discussion

The starting calixarene tetraamides 1g and 1h were obtained by reaction of 1a with the appropriate N,N-

(b) (a) Bianda, M. T.; Horner, J. N.; Newcomb, M. J. Org. Chem. 1989, 54, 4626. (b) Reetz, M. T.; Niemeyer, C. M.; Harms, K. Angew. Chem. Int. Ed. Engl. 1991, 30, 1472. (c) Yang, X.; Knobler, C. B.; Hawthorne, M. F. Ibid. 1991, 30, 1507. (d) Beer, P. D.; Hazlewood, C.; Hesek, D.; Hodacova, J.; Stokes, S. E.; J. Chem. Soc., Dalton Trans. 1993, 1327. (6) Rudkevich, D. M.; Stauthamer, W. P. R. V.; Verboom, W.; Engbersen, J. F. J.; Harkema, S.; Reinhoudt, D. N. J. Am. Chem. Soc. 1992, 144, 0671.

(7) Valiyaveettil, S.; Engbersen, J. F. J.; Verboom, W.; Reinhoudt, D. N. Angew. Chem. 1993, 105, 942.

(8) After completion of this work Beer et al.⁹ reported a lower rim functionalized calix[4]arene anion receptor.

dialkyl-2-chloroacetamide in the presence of potassium iodide and K₂CO₃ as a base in refluxing acetonitrile for 18 h in 78 and 58% yield, respectively. Reaction of calix-[4] arenes 1a,c,e,f (all cone conformation) with 40 equiv of chlorosulfonic acid in CHCl₃ at room temperature for 2-3 h (method A) afforded the tetrakis(chlorosulfonyl)calix[4]arenes 2a,c,e,f in 52-69% yield upon recrystallization of the crude reaction mixture. The ¹H NMR spectra of 2a,c,e,f indicate the presence of four identical rings. Under these conditions the tetrapropoxycalix[4]arene 1b did not give the expected tetrakis(chlorosulfonyl)calix[4]arene 2b but the tetrahydroxytetrakis(chlorosulfonyl)calix[4]arene 2a in 35% yield. Apparently under the acidic conditions, the propyl ether groups are not stable.¹³ Only a few examples of calizarenes having reactive chlorosulfonyl (SO₂Cl) groups at the upper rim are known.^{15,16} They were prepared in two steps viz. sulfonvlation followed by treatment with thionyl chloride,^{15,16} although it is known that the SO₂Cl moiety can in principle be introduced in a one step¹⁷ like in the synthesis of chlorosulfonyl benzocrown ethers.¹⁸

Under the same conditions, the 1,3-alternate conformer of 1c, calix[4]arene 1d, gave a complex reaction mixture. However, heating of 1d at 50 °C for 20 min (method B) gave the tetrakis(chlorosulfonyl)calix[4]arene 2d in 54% yield. The ¹H NMR spectrum of 2d shows a singlet at δ 3.79 for the methylene bridge protons whereas in the ^{13}C NMR spectrum the corresponding carbon absorptions are present at δ 34.5 which are both characteristic for a calix-[4] arene in the 1,3-alternate conformation.^{19,20}

Surprisingly, treatment of calix[4] arene amides 1g and 1h (cone conformation) with chlorosulfonic acid at room temperature for 2-3 h gave the bis(chlorosulfonyl)calix-[4] arenes 3a and 3b in 42 and 27% yield, respectively. Probably under the strongly acidic conditions, the amide groups of 1g and 1h are protonated²¹ which results in a lower reactivity of the para positions of the corresponding aromatic rings. The two SO₂Cl groups are introduced at diametrical aromatic rings as was concluded from the symmetry of the ¹H NMR spectra. The ¹H NMR spectrum of 3a exhibits a singlet at δ 7.79 for the hydrogens of the chlorosulfonylated rings and a triplet and a doublet at δ 6.40 and 6.18, respectively, for the hydrogens of the unreacted rings. Because of the symmetry there is only one AB system (δ 5.34 and 3.36) for the methylene bridge protons. Compounds 3a and 3b represent the first examples of calix[4] arenes having two SO₂Cl groups. These compounds are not accessible via the two-step procedure because to the best of our knowledge selective sulfonylation

0022-3263/93/1958-7602\$04.00/0

^{(1) (}a) Luecke, H.; Quiocho, F. A. Nature 1990, 347, 402. (b) He, J. J.; Quiocho, F. A. Science 1991, 251, 1479.
(2) Kanyo, Z. F.; Christianson, D. W. J. Biol. Chem. 1991, 266, 4264.

⁽³⁾ Thatcher, G. R. J.; Cameron, D. R.; Nagelkerke, R.; Schmitke, J. J. Chem. Soc., Chem. Commun. 1992, 386 and refs cited therein.

 ^{(4) (}a) Dietrich, B.; Guilham, J.; Lehn, J.-M.; Pascard, C.; Sonveaux,
E. Helv. Chim. Acta 1984, 67, 91. (b) Schmidtchen, F. P. J. Org. Chem.
1986, 51, 5161. (c) Hosseini, M. W.; Blacker, A. J.; Lehn, J.-M. J. Am.
Chem. Soc. 1990, 112, 3896. (d) Deslongchamps, G.; Galán, A.; de Chem. Soc. 1950, 112, Soco. (d) Descongenances, G., Galan, A., Ge Mendoza, J.; Rebek, Jr., J. Angew. Chem. Int. Ed. Engl. 1992, 31, 61. (e)
Sessler, J. L.; Cyr, M.; Furuta, H.; Kral, V.; Mody, T.; Morishima, T.;
Shionoya, M.; Weghorn, S. Pure Appl. Chem. 1993, 65, 393.
(5) (a) Blanda, M. T.; Horner, J. N.; Newcomb, M. J. Org. Chem. 1989.

^{1992, 114, 9671.}

 ⁽⁹⁾ Beer, P. D.; Dickson, C. A. P.; Fletcher, N.; Goulden, A. J.; Grieve,
A.; Hodacova, J.; Wear, T. J. Chem. Soc., Chem. Commun. 1993, 828.
(10) Gutsche, C. D. Calixarenes; Monographs in supramolecular chemistry; Stoddart, J. F., Ed.; The Royal Society of Chemistry: Cambridge, 1989; Vol 1.

⁽¹¹⁾ Vicens, J., Bohmer, V., Eds. Calizarenes: a versatile class of macrocyclic compounds; Topics in inclusion science; Kluwer Academic

Press: Dordrecht, 1991. (12) Van Loon, J.-D.; Verboom, W.; Reinhoudt, D. N. Org. Prep. Proc. Int. 1992, 24, 437.

⁽¹³⁾ Very recently Katritzky et al.¹⁴ reported the partial demethylation of o-nitroanisole upon reaction with chlorosulfonic acid.

⁽¹⁴⁾ Katritzky, A. R.; Wu, J.; Rachwal, S.; Macomber, D.; Smith, T. P. Synth. Commun. 1993, 23, 405.

⁽¹⁵⁾ Shinkai, S.; Kawaguchi, H.; Manabe, O. J. Polym. Sci., Polym. Lett. 1988, 26, 391.

⁽¹⁶⁾ Shinkai, S.; Kawabata, H.; Matsuda, T.; Kawaguchi, H.; Manabe, O. Bull. Chem. Soc. Jpn. 1990, 63, 1272.
(17) Huntress, E. H.; Carten, F. H. J. Am. Chem. Soc. 1940, 62, 511.

⁽¹⁸⁾ Markovsky, L. N.; Rudkevich, D. M.; Kalchenko, V. I. Zh. Org.

Khim. 1989, 25, 1995. Chem. Abstr. 1990, 112, 216892w.
(19) Jaime, C.; de Mendoza, J.; Prados, P.; Nieto, P. M.; Sánchez, C.

J. Org. Chem. 1991, 56, 3372. (20) Verboom, W.; Datta, S.; Asfari, Z.; Harkema, S.; Reinhoudt, D. N. J. Org. Chem. 1992, 57, 5394.

⁽²¹⁾ Homer, R. B.; Johnson, C. D. In The chemistry of functional roups. The chemistry of amides; Zabicky, J., Ed.; Interscience publishers: London, 1970; pp 188-197

of calix[4]arenes is unknown. Method B gave the tetrakis-(chlorosulfonyl)calix[4]arenes 2g and 2h both in 61% yield.

Because TREN-derived sulfonamides form complexes with anions (vide supra),⁷ these tetrakis(chlorosulfonyl)calix[4]arenes 2 might be suitable precursors for the synthesis of hydrophobic, neutral anion receptors. Reaction of 2c with ammonia, n-propylamine, tert-butylamine, or N-acetylethylenediamine in CH_2Cl_2 for 4 h gave the corresponding calix[4]arene sulfonamides 4a-d in yields of 64, 87, 88, and 59%, respectively. We also isolated the solid complex of 4d with Bu₄NHSO₄, the formation of which was confirmed by a satisfactory elemental analysis. In the ¹H NMR spectrum the NH absorption has been shifted from δ 6.90 (free ligand) to δ 7.75 (complex). In the negative FAB mass spectrum of the solid complex, in addition to a peak of the free ligand, also signals of $[L + HSO_4^-]$ and $[L + Bu_4NHSO_4]$ are present. The association constants K of the 1:1 complexes of 4b-

Table I. Association Constants $(K, M^{-1}, CDCl_3)$ of Complexation of 4b-d, 5, and 6 with Different Anions^a

	anions ^b							
compd	H ₂ PO ₄ -	HSO4-	Cl-	NO₃-	C104-			
4b	350	970	360	240	<1			
4c	<10	134	72	43	<1			
4d	с	103400	1250	513	<1			
5	14	10	15	<10	16			
6	262	350	330	99	84			

^a The error is <5%. ^b The counterion is Bu₄N⁺. ^c Compound 4d shows a complicated (mixed) complexation with H₂PO₄⁻ (compare refs 7 and 32); no K value for 1:1 complexation could be determined.

 d^{22} (and of reference compounds 5 and 6) with the tetrabutylammonium salts of H₂PO₄⁻, HSO₄⁻, Cl⁻, NO₃⁻, and ClO_4^{-} in $CDCl_3$ have been determined with ¹H NMR titration experiments and are summarized in Table I. Surprisingly in all cases a selectivity for HSO₄- was observed. The influence of the presence of four more or less preorganized binding sites is very clear comparing the K values of 4b,c and 4d with those of the corresponding reference compounds 5 and 6, respectively. For all anions 4d shows the highest K values which may be due to the presence of four amide functions in addition to four sulfonamide moieties. However, more important is that 4d exhibits for HSO_4^- a selectivity of about 10² over Cl⁻ and NO_3^{-} . Obviously the three-dimensional cavity of 4d complexes the tetrahedral HSO₄- better than the spherical Cl^{-} and the planar NO_{3}^{-} . To the best of our knowledge 4b-d represent the first anion receptors with a selectivity for HSO₄-.23

Experimental Section

General. Melting points are uncorrected. ¹H and ¹³C NMR spectra were recorded in CDCl₃ with Me₄Si as internal standard unless stated otherwise. Fast atom bombardment (FAB) mass spectra were obtained with *m*-nitrobenzyl alcohol as a matrix.

⁽²²⁾ Due to the presence of broad signals in the ¹H NMR spectrum of 4a in CDCl₃ the anion complexation behavior has not been studied.

⁽²³⁾ Examples of nonselective (hydrogen) sulfate complexation have been reported in refs 4a, 6, 7, and Smith, P. J.; Reddington, M. V.; Wilcox, C. S. Tetrahedron Lett. 1992, 33, 6085.

compd	yield (%)	mp (°C)	¹ H NMR (CDCl ₃) (δ)			¹³ C NMR (CDCl ₃) (δ)		FAB-MS
			ArH (s, 8 H)	OCH ₂	ArCH ₂ Ar	ArC-SO ₂ (s)	ArCH ₂ Ar (t)	m/z (M ⁺) calcd
2a ^b	52°	>230 dec	7.37		3.94 (s, 8 H)	138.0	30.4	817.0 (817.5)
2c	6 9	172-174	7.50	4.32 (t, 4 H, $J = 4.4$ Hz), 3.80 (t, 4 H, $J = 4.4$ Hz)	4.74 (d, 4 H, $J = 13.5$ Hz), 3.43 (d, 4 H, $J = 13.5$ Hz)	138.5	30.5	1015.3 ^d (1015.3)
2d	54	>290 dec	7.94	4.01 (t, 4 H, $J = 1.8$ Hz), 3.77 (t, 4 H, $J = 1.8$ Hz)	3.79 (s, 8 H)	138.1	34.5	1051.0° (1050.9)
2e	53	212-213	7.49	4.35 (t, 4 H, $J = 4.4$ Hz), 3.80 (t, 4 H, $J = 4.4$ Hz)	4.77 (d, 4 H, $J = 13.7$ Hz), 3.42 (d, 4 H, $J = 13.7$ Hz)	138.8	31.0	1070.9 ^d (1071.1)
2f	65	108-109	7.53	4.88 (s, 8 H)	5.14 (d, 4 H, $J = 14.0$ Hz), 3.55 (d, 4 H, $J = 14.0$ Hz)	139.9	31.2	1162.9 (1162.9)
$2g^b$	61	208–20 9	7.21	5.02 (s, 8 H)	4.96 (d, 4 H, $J = 13.0$ Hz), 3.48 (d, 4 H, $J = 13.0$ Hz)	140.0	31.9	1159.0 (1158.9)
2 h	61	226-228	7.50	5.15 (s, 8 H)	5.66 (d, 4 H, $J = 13.7$ Hz), 3.48 (d, 4 H, $J = 13.7$ Hz)	139.1	32.6	1234.9 ^d (1235.6)

^a All compounds gave satisfactory elemental analyses. ^b In DMSO-d₆. ^c Starting from 1b the yield is 35%. ^d (M - Cl)⁺. ^e (M - H)⁺.

 CH_2Cl_2 was distilled from CaH_2 and stored over molecular sieves. Calix[4]arenes 1a,²⁴ lb,²⁵ 1c,²⁶ 1d,²⁰ 1e,²⁷ and 1f,²⁸ and reference compounds 5^{29} and 6^{30} were prepared according to literature procedures. All reactions were carried out under an argon atmosphere.

In the workup procedures the (combined) organic layers were washed with water $(2\times)$ and dried with MgSO₄, whereupon the solvent was removed under reduced pressure. The presence of solvent in the analytical samples was confirmed by ¹H NMR spectroscopy.

General Procedure for the Preparation of 1g,h. A mixture of calix[4]arene 1a (4.24 g, 0.01 mol), N,N-dialkyl-2-chloroacetamide (0.1 mol), sodium iodide (15 g, 0.1 mol), and K₂CO₃ (13.8 g, 0.1 mol) in acetonitrile (100 mL) was refluxed for 18 h. After filtration the solvent was removed. The residue was taken up in CH₂Cl₂ (150 mL) and washed with water (3 × 400 mL). Pure compounds were obtained upon recrystallization of the crude reaction products from MeOH.

25,26,27,28-Tetrakis[(dimethylcarbamoyl)methoxy]calix-[4]arene (1g): yield 78%; mp 256-258 °C; ¹H NMR δ 6.7-6.5 (m, 12 H), 5.11 (d, 4 H, J = 13.6 Hz), 4.84 (s, 8 H), 3.25 (d, 4 H, J = 13.6 Hz), 3.00 and 2.91 (s, 2 × 12 H); ¹³C NMR δ 169.5 (s), 156.4 (s), 134.8 (s), 128.5 (d), 122.4 (d), 71.7 (t), 36.2 (q), 35.4 (q), 31.7 (t); MS-FAB *m/z* 765.4 (M⁺, calcd 764.9). Anal. Calcd for C₄₄H₅₂N₄O₈: C, 69.09; H, 6.85; N, 7.32. Found: C, 69.28; H, 7.05; N, 7.11.

25,26,27,28-Tetrakis[(diethylcarbamoyl)methoxy]calix[4]arene (1h): yield 58%; mp 212-213 °C; ¹H NMR δ 6.65–6.5 (m, 12 H), 5.23 (d, 4 H, J = 13.6 Hz), 4.90 (s, 8 H), 3.4–3.25 (m, 16 H), 3.23 (d, 4 H, J = 13.6 Hz), 1.25–1.00 (m, 24 H); ¹³C NMR δ 168.6 (s), 156.6 (s), 134.9 (s), 128.4 (d), 122.2 (d), 71.5 (t), 40.9 (t), 39.9 (t), 31.9 (t), 14.3 (q) 13.1 (q); MS-FAB m/z 877.4 (M⁺, calcd 877.1). Anal. Calcd for C₅₂H₆₈N₄O₈: C, 71.21; H, 7.81; N, 6.39. Found: C, 71.54; H, 8.02; N, 6.12.

General Procedure for the Preparation of Bis- and Tetrakis(chlorosulfonyl)calix[4]arenes 2 and 3. To a cooled solution of calix[4]arene 1 (2 mmol) in CHCl₃ (25 mL) was added chlorosulfonic acid (5.6 mL, 80 mmol) at a rate to keep the temperature between 0 and 10 °C. The reaction mixture was stirred at room temperature for 2–3 h (method A) or heated at 50 °C for 20 min (method B). The reaction mixture was poured onto ice (100 g) and extracted with CH₂Cl₂ (4 × 50 mL). The crude products were recrystallized from toluene to afford pure compounds 2,3. The yields, melting points and selected spectral data of compounds 2 are summarized in Table II.

5,17-Bis(chlorosulfonyl)-25,26,27,28-tetrakis[(dimethylcarbamoyl)methoxy]calix[4]arene (3a): yield 42%; mp 218-219 °C; ¹H NMR δ 7.79 (s, 4 H), 6.45-6.35 (m, 2 H), 6.2-6.15 (m, 4 H), 5.34 (s, 4 H), 4.59 (s, 4 H), 5.24 and 3.36 (d, 2 × 4 H, J = 13.8 Hz), 3.04 (s, 6 H), 2.96 (s, 12 H), 2.91 (s, 6 H); ¹³C NMR δ 169.2 (s), 168.0 (s), 163.7 (s), 155.3 (s), 137.9 (s), 137.1 (s), 132.0 (s), 128.3 (d), 127.9 (d), 123.7 (d), 72.2 (t), 71.9 (t), 36.0 (q), 35.7 (q), 35.5 (q), 35.4 (q), 31.7 (t); MS-FAB m/z 961.3 (M⁺, calcd 961.9). Anal. Calcd for C₄₄H₅₆Cl₂N₄O₁₂S₂·1.2CH₂Cl₂: C, 51.03; H, 4.96; N, 5.27. Found: C, 50.98; H, 5.15; N, 5.11.

5,17-Bis(chlorosulfonyl)-25,26,27,28-tetrakis[(diethylcarbamoyl)methoxy]calix[4]arene (3b): yield 37%; mp 163-165 °C; ¹H NMR δ 7.79 (s, 4 H), 6.5–6.3 (m, 2 H), 6.3–6.2 (m, 2 H), 5.35 (s, 4 H), 4.68 (s, 4 H), 5.38 and 3.25 (d, 2 × 4 H, J = 13.0 Hz), 3.5–3.0 (m, 16 H), 1.3–1.0 (m, 24 H); MS-FAB m/z 1073.4 [(M + H)⁺, calcd 1073.1]. Anal. Calcd for C₅₂H₆₆Cl₂N₄O₁₂S₂·1.7H₂O: C, 56.43; H, 6.33; N, 5.07. Found: C, 56.10; H, 6.13; N, 4.83. Karl Fisher titration calcd for 2H₂O: 2.75. Found: 2.66.

General Procedure for the Preparation of 4a-d. To a solution of 2c (1.05 g, 1 mmol) in CH₂Cl₂ (40 mL) was added the appropriate alkylamine (10 mmol). In the case of 4a ammonia was bubbled through the solution for 10 min. The reaction mixture was stirred at rt for 4 h and subsequently washed with 1 N HCl (2 × 50 mL) and water (3 × 50 mL). The crude reaction products were recrystallized from MeOH to give pure 4a-d.

25,26,27,28-Tetrakis(methoxyethoxy)-5,11,17,23-tetrakis-(sulfamoyl)calix[4]arene (4a): yield 64%; mp 171-173 °C; ¹H NMR (DMSO- d_6) δ 7.31 (s, 8 H), 6.96 (s, 8 H), 4.16 and 3.79 (t, 2 × 8 H, J = 5.0 Hz), 4.53 and 3.43 (d, 2 × 8 H, J = 13.3 Hz), 3.34 (s, 12 H); ¹³C NMR (DMSO- d_6) δ 158.6 (s), 138.0 (s), 134.6 (s), 125.9 (d), 73.6 (t), 71.2 (t), 58.0 (q), 30.1 (t); MS-FAB m/z973.2 (M⁺; calcd 973.1). Anal. Calcd for C₄₀H₅₂N₄O₁₆S₄·1.5H₂O: C, 48.04; H, 5.54; N, 5.60; S, 12.82. Found: C, 47.88; H, 5.80; N, 5.42; S, 13.01. Karl Fisher titration calcd for 1.5H₂O: 2.70. Found: 2.66.

25,26,27,28-Tetrakis(methoxyethoxy)-5,11,17,23-tetrakis-(propylsulfamoyl)calix[4]arene (4b): yield 87%; mp 191– 192 °C; ¹H NMR δ 7.26 (s, 8 H), 4.62 and 3.30 (d, 2 × 4 H, J = 13.4 Hz), 4.84 (t, 4 H, J = 6.2 Hz), 4.21 and 3.79 (t, 2 × 8 H, J= 5.1 Hz), 3.38 (s, 12 H), 2.86 (q, 8 H, J = 6.2 Hz), 1.51 (sextet, 8 H, J = 6.2 Hz), 0.89 (t, 12 H, J = 6.2 Hz); ¹³C NMR δ 159.1 (s), 135.2 (s), 135.1 (s), 127.2 (d), 73.8 (t), 71.6 (t), 58.6 (q), 45.1 (t), 30.7 (t), 23.3 (t) 11.1 (q); MS-FAB m/z 1141.4 (M⁺; calcd 1141.5). Anal. Calcd for C₈₂H₇₆N₄O₁₆S₄·0.7H₂O: C, 54.12; H, 6.76; N, 4.85. Found: C, 53.99; H, 6.75; N, 4.83. Karl Fisher titration calcd for 0.7H₂O: 1.09. Found: 1.05.

5,11,17,23-Tetrakis[(1,1-dimethylethyl)sulfamoyl)-25,26, 27,28-tetrakis(methoxyethoxy)calix[4]arene (4c): yield 88%; mp 129–130 °C; ¹H NMR δ 7.31 (s, 8 H), 4.73 (s, 4 H), 4.59 and 3.29 (d, 2 × 4 H, J = 13.6 Hz), 4.19 and 3.76 (t, 2 × 8 H, J = 4.6 Hz), 3.35 (s, 12 H), 1.19 (s, 36 H); ¹³C NMR δ 159.0 (s), 138.0 (s), 134.9 (s), 127.4 (d), 73.6 (t), 71.5 (t), 58.6 (q), 54.9 (s), 30.2 (q); MS-FAB m/z 1194.5 [(M – H)-, calcd 1195.2]. Anal. Calcd for

⁽²⁴⁾ Gutsche, C. D.; Lin, L.-G. Tetrahedron 1986, 42, 1633.

 ⁽²⁵⁾ Iwamoto, K.; Araki, K.; Shinkai, S. J. Org. Chem. 1991, 56, 4955.
(26) Arduini, A.; Casnati, A.; Fabbi, M.; Minari, P.; Pochini, A.; Sicuri,

A. R.; Ungaro, R. J. Supramol. Chem. 1993, 1, 235.

⁽²⁷⁾ Arduini, A.; Manfredi, G.; Pochini, A.; Sicuri, A.; Ungaro, R. J. Chem. Soc., Chem. Commun. 1991, 936.

⁽²⁸⁾ Arnaud-Neu, F.; Collins, E. M.; Deasy, M.; Ferguson, G.; Harris, S. J.; Kaitner, B.; Lough, A. J.; McKervey, M. A.; Marques, E.; Ruhl, B. L.; Schwing-Weill, M. J.; Seward, E. M. J. Am. Chem. Soc. 1989, 111, 8681.

⁽²⁹⁾ Campbell, K. N.; Campbell, B. K.; Salm, E. M. Proc. Indiana Acad. Sci. 1948, 57, 97.

⁽³⁰⁾ Mikiciuk-Olasik, E. Pol. J. Chem. 1989, 63, 279.

 $C_{56}H_{84}N_4O_{16}S_{4}\text{-}0.7H_2O\text{: }C,\ 55.58;\ H,\ 7.11;\ N,\ 4.63;\ S,\ 10.60.$ Found: C, 55.41; H, 7.28; N, 4.60; S, 10.53. Karl Fisher titration calcd for 0.7H₂O: 1.04. Found: 1.02.

5,11,17,23-Tetrakis[[(2-acetylamino)ethyl]sulfamoyl]-25,-26,27,28-tetrakis(methoxyethoxy)calix[4]arene (4d): yield 59%; mp 89-90 °C; ¹H NMR & 7.25 (s, 8 H), 6.90 (s, 4 H), 6.30 (s, 4 H), 4.61 and 3.32 (d, 2×4 H, J = 13.3 Hz), 4.25-4.15 (m, 8 H), 3.8-3.75 (m, 8 H), 3.38 (s, 12 H), 3.35-3.25 (m, 8 H), 3.0-2.9 (m, 8 H), 1.99 (s, 12 H); 13 C NMR δ 159.4 (s), 158.9 (s), 134.8 (s), 134.6 (s), 127.0 (d), 73.7 (t), 71.5 (t), 58.5 (q), 45.1 (t), 41.9 (t), 29.9 (t), 22.9 (q); MS-FAB m/z 1313.7 (M⁻, calcd 1313.6). Anal. Calcd for C₅₈H₈₀N₈O₂₀S₄.0.5H₂O: C, 50.86; H, 6.17; N, 8.47; S, 9.70. Found: C, 51.07; H, 5.98; N, 8.52: S, 9.89. Karl Fisher titration calcd for 0.5H₂O: 0.71. Found: 0.71.

Solid Complex of 4d and Bu₄NHSO₄. A mixture of 4d (132 mg, 0.1 mmol) and Bu₄NHSO₄ (34 mg, 0.1 mmol) in CHCl₃ (20 mL) was stirred at rt for 18 h. The solvent was removed and the resulting solid dried: mp 45 °C; ¹H NMR δ 7.75 (s, 4 H), 7.37 (s, 8 H), 4.56 and 3.38 (d, 2×4 H, J = 13.1 Hz), 4.18 (t, 8 H, J =5.1 Hz), 3.79 (t, 8 H, J = 5.1 Hz), 3.38 (s, 12 H), 3.4–2.9 (m, 24 H), 1.95 (s, 12 H), 1.9–1.3 (m, 16 H), 1.00 (t, 12 H, J = 7.3 Hz); MS-FAB m/z 1311.3 [(L-2H)-, calcd 1311.6], 1408.9 [(L + HSO₄-- 2 H)-, calcd 1408.7], 1650.2 [(L + BuNHSO₄ - 3 H)-, calcd 1650.2]. Anal. Calcd for C72H117N9O24S5-0.75CHCl3: C, 50.14; H, 6.76; N, 7.24. Found: C, 49.88; H, 7.07; N, 7.35.

Determination of Association Constants. The measurements were performed by 1H NMR titration experiments in CDCl₃ at 298 K using a constant host concentration of 4 mM and a varying guest concentration of 0.3-30 mM. For each K value determination 5-10 different guest concentrations were taken. As a probe the chemical shift of the SO₂NH signal was used. The K values were calculated by nonlinear regression as described in ref 31.

Acknowledgment. We gratefully acknowledge Nuffic for financial support of Y.M.

(31) De Boer, J. A. A.; Reinhoudt, D. N.; Harkema, S.; van Hummel, G. J.; de Jong, F. J. Am. Chem. Soc. 1982, 104, 4073.
(32) Flatt, L. S.; Lynch, V.; Anslyn, E. V. Tetrahedron Lett. 1992, 33,

2785.